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Abstract. Approximate Hamiltonians for the one-dimensional (1D) Calogero and two-
dimensional (2D) anyon models in a harmonic well are constructed. These Hamiltonians are
exactly diagonalizable, and their spectra interpolate linearly between the Bose statistics and
the Fermi statistics. In particular, in 2D, the thermodynamics is similar to that of a system
obeying a generalized exclusion principle and may be viewed as a starting approximation for
the thermodynamics of anyons.

Many generalizations of the concept of quantum statistics have been considered in recent
decades [1]. The 1D Calogero model and the 2D anyon model are examples. In these two
models, the particles interpolate between bosons and fermions or more generally between
the conjugate representations of the symmetric group when the statistical couplingν goes
from 0 to 1 [2, 3]. Albeit the Haldane generalization of the Pauli principle is satisfied in
some particular cases, as the Calogero model in the Bose and Fermi representations [4],
or anyons in the lowest Landau level [5], the general situation is often more complicated
[6, 7].

In this paper, I focus on the remarkable properties of the solution of the Calogero
model to first order in perturbation theory. In this way, I define a ‘linear model’ of
intermediate statistics in 1D, the particles of which are in a harmonic well and only
interact by interchanges. This model is exactly solved for all exchange symmetries of
the wavefunction. Its spectrum interpolates linearly between the conjugate representations
of SN and of course involves all the linear energies of the Calogero model. A consistent
thermodynamics is obtained in the thermodynamic limit. The linear model of intermediate
statistics is immediately generalizable in 2D where it appears intimately connected to the
anyon model. Albeit its eigenfunctions are not altered by the interaction, the linear model
produces a thermodynamics similar to that of a system obeying a generalized exclusion
principle. In particular, it may be viewed as a starting approximation for the thermodynamics
of anyons.

Here, one considers a quantum system ofN particles with a HamiltonianH . p is a
permutation of particles,P is its conjugate class,Y is a Young pattern or a Young projector
[8]. The classP is identified with the partition [{LνL}] of N whereνL is the number of
cycles of lengthL in p ∈ P . For convenience, a Young pattern will be denoted by a
partition between round brackets, namely({λl}) whereλl is the number of cases in thelth
line.
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One defines the partition functionZY = tr e−βHY and the class functionZP = tr e−βHp,
with β−1 = kBT . The latter trace is over the whole Hilbert space, it may be expanded with
respect to irreducible representations as

ZP =
∑
Y

χY (P )ZY (1)

where the characterχY (P ) [9] originates from the trace ofp in each irreducible state space
generated by the permutations of a stateYψ 6= 0. The inverse relation

ZY =
∑
P

dP

N !
χY (P )ZP (2)

is obtained by using the orthogonality relations for characters.dP = N !/
∏
L νL!LνL is the

number of permutations of classP .
In the thermodynamic limit, the thermodynamics is determined by the connected parts

Zc
Y and Zc

P , which are additive quantities. In particular,Zc
(N), Z

c
(1N ) and (1/N !)Zc

[1N ]
reproduce the cluster coefficientsbN in Bose, Fermi and Boltzmann statistics, respectively
[10]. The connected parts of the class functions can be defined in a standard way by

Z[N ] = Zc
[N ]

Z[L1,L2] = Zc
[L1,L2] + Zc

[L1]Z
c
[L2]

Z[L1,L2,L3] = Zc
[L1,L2,L3] + Zc

[L1,L2]Z
c
[L3] + Zc

[L1,L3]Z
c
[L2] + Zc

[L2,L3]Z
c
[L1] + Zc

[L1]Z
c
[L2]Z

c
[L3]

(3)

etc. We can solve these equations successively and obtain

Zc
[N ] = Z[N ]

Zc
[L1,L2] = Z[L1,L2] − Z[L1]Z[L2]

Zc
[L1,L2,L3] = Z[L1,L2,L3] − Z[L1,L2]Z[L3] − Z[L1,L3]Z[L2] − Z[L2,L3]Z[L1] + 2Z[L1]Z[L2]Z[L3]

(4)

etc. In a perturbative expansion [3], the connected part reduces to the series of connected
diagrams. The relations (1) and (2) apply equally well to the connected partsZc

Y andZc
P ,

and will be useful to computebN in Bose and Fermi statistics.
Note that the particles will be confined in a harmonic well of frequencyω rather than

in a box of volumeV . Theω → 0 limit can be identified with the thermodynamic limit
if the divergent factorN−d/2(βω)−d surviving in the connected parts is identified with an
additive factor, namelyV λ−dT whered is the space dimension andλT = h̄

√
2πβ/m is the

thermal wavelength [11].
Let me first review some aspects of the system ofN identical harmonic oscillators. The

Hamiltonian is

H =
N∑
i=1

(− 1
2∂

2
i + 1

2ω
2x2
i ) (5)

in units h̄ = 1, m = 1. The creation (annihilation) operators are

a±i =
√
ω

2
xi ∓ ∂i√

2ω
[H, a±i ] = ±ωa±i . (6)

A basis in the ring of the symmetric polynomials in theN commuting variablesa±i is given
by

A±k =
N∑
i=1

(a±i )
k [H,A±k ] = ±kωA±k (7)
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with k = 1, 2, . . . , N . These operators constitute a complete set of raising (lowering)
operators preserving the exchange symmetry of the wavefunction. For a definite exchange
symmetry, there is one ground stateψ0 annihilated by theAk ’s and a set of excited states

ψ =
N∏
k=1

(A+k )
nkψ0 (8)

with the energies

E =
N∑
k=1

knkω + E0 (9)

where thenk ’s are non-negative integers. According to permutation theory, there are
N ! independent ground states: one in the Bose representation, another in the Fermi
representation, anddY degenerate ground states in each irreducible representation of
dimension dY of SN . The ground states may be deduced from the action of some
non-symmetric homogeneous polynomials in thea+i ’s onto the bosonic ground state
exp(− 1

2ω
∑
x2
i ). Thus, the energy of a ground state isE0 = 1

2Nω + dω if d is the degree
of the homogeneous polynomial. In particular, the fermionic ground state follows from the
action of the antisymmetric operator

∏
i,j<(a

+
i −a+j ) and its energy is12Nω+ 1

2N(N−1)ω.
The general case is outlined in [3]. For instance, one finds the bases{a+1 −a+2 , a+1 −a+3 } and
{(a+1 −a+2 )(a+1 +a+2 −2a+3 ), (a

+
1 −a+3 )(a+1 +a+3 −2a+2 )} for the two equivalent representations

of dimension 2 ofS3.
In this approach, the complete set of quantum numbers isnk, Y , a and b where the

nk ’s are the preceding raising numbers,Y is a Young pattern ofSN , a = 1, 2, . . . , dY labels
the equivalent irreducible representations associated withY andb = 1, 2, . . . , dY labels the
elements of a ground-state basis for the representation of indexesY and a. Since all the
ground states of an irreducible representation are combinations of the permutations of one
of them, their energies are identical, that is

E0 = 1
2Nω + dY,aω (10)

does not depend onb. One can select one of these degenerate ground states with a Young
projectorY , as in the definition of the partition functionZY .

Performing the trace over thenk ’s, one gets the partition function in terms of the
ground-state energies,

ZY =
∑
a

exp[−(dY,a −N(N − 1)/4)βω]∏N
k=1 2sh(kβω/2)

. (11)

The energy (10) is12Nω for the Bose ground state and1
2Nω+ 1

2N(N − 1)ω for the Fermi
one. In another representation, the ground-state energies may be obtained by identifying
(11) with (2) where

ZP =
∏
L

(
1

2sh(Lβω/2)

)νL
(12)

is first rewritten as a sum of certain terms of the expansion (11) by means of algebraic
operations—this is always possible due to (1). In this way, one finds{d(2),a} = {0},
{d(11),a} = {1}, {d(3),a} = {0}, {d(21),a} = {1, 2}, {d(111),a} = {3}, {d(4),a} = {0},
{d(31),a} = {1, 2, 3}, {d(22),a} = {2, 4}, {d(211),a} = {3, 4, 5}, {d(1111),a} = {6}; etc. Note
the symmetrydY,a = 1

2N(N − 1)− dȲ ,1+dY−a between conjugate patternsY and Ȳ .
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Let me now consider a system of identical harmonic oscillators interacting by an
attractive Calogero potential, that is

H =
N∑
i=1

(− 1
2∂

2
i + 1

2ω
2x2
i )+

∑
i,j<

ν(ν − 1)

(xi − xj )2 (13)

for ν ∈ [0, 1]. This model is rather different from the Calogero one for a repulsive potential.
In fact, it is a 1D model of intermediate statistics analogous to the 2D anyon model [2].
Suppose that one wishes to discuss the interaction to first order in perturbation theory. To
do this, it is advisable to do the transformationψ = 5i,j<|xi − xj |νψ̃ in order to work with
a Hamiltonian

H̃ =
N∑
i=1

(− 1
2∂

2
i + 1

2ω
2x2
i )−

∑
i,j<

ν

xi − xj (∂i − ∂j ) (14)

whose matrix elements are well defined with the principal value regularization. Then, it
suffices to diagonalize the restriction of the perturbation inside each unperturbed degenerate
subspace. The restriction of the two-body interaction−νx−1

ij ∂ij is necessarilyνωpij , where
pij represents the transposition ofxi andxj , because this restriction must reproduce the linear
slopes±νω of the two-body spectrum if the wavefunction is symmetric (antisymmetric) with
respect toxi , xj .

From now on, we focus on the Hamiltonian

H =
N∑
i=1

(− 1
2∂

2
i + 1

2ω
2x2
i )+

∑
i,j<

νωpij . (15)

Although this Hamiltonian is defined above as a first-order approximation for the Calogero
model in a harmonic well, we will see that it leads to consistent and interesting results
in the non-perturbative domainν ∈] −∞,∞[. First, note that

∑
i,j< pij is known as the

transposition class operator in group theory [8]. Any state of an irreducible representation
Y is an eigenstate of this operator for the eigenvalue

sY =
∑
l

λl(λl − 1)

2
−
∑
c

λ̄c(λ̄c − 1)

2
(16)

whereλl(λ̄c) is the number of cases in thelth line (cth column) of the Young patternY .
As a result, the harmonic basis (8) labelled bynk, Y, a andb is also an eigenstate basis of
the preceding Hamiltonian (15) but for the energy spectrum

E =
N∑
k=1

knkω + 1
2Nω + dY,aω + sY νω (17)

with dY,a unaltered. For a givenY , this spectrum reproduces the harmonic spectrum of the
representationY at ν = 0 and, surprising enough, it reproduces the harmonic spectrum of
the conjugate representation̄Y at ν = 1. Indeed, the relationdY,a + sY = dȲ ,a is clearly
verified by the values ofdY,a obtained above forN = 2, 3, 4, . . . (the proof for allN remains
to be obtained). In conclusion, the eigenstates are those of a system of identical harmonic
oscillators but the spectral properties are those of a model of intermediate statistics.

The partition functions are simply expressed in terms of the harmonic ones (11) as

ZY (ν) = e−sY βωνZY (0) (18)

and the class functions are then deduced from the relations (1). The linear interpolation
between conjugate representations means thatZY (1− ν) = ZȲ (ν) which is equivalent to
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ZP (1−ν) = (−)PZP (ν) due to the identityχȲ (P ) = (−)P χY (P ). The class functions have
other remarkable properties that I have verified up toN = 6 (their proofs for allN remain to
be obtained). After some factorizations, one recovers the functionsFP (ν) = ZP (ν)/ZP (0)
obtained in [3] for a different model (this coincidence will be discussed later). The appendix
displays the first functionsFP and their connected parts. The cyclic functions are completely
factorizable as

F[N ] =
N−1∏
k=1

sh(k −Nν)(βω/2)
sh(kβω/2)

. (19)

Albeit the functionFP is not completely factorizable in the general case, it admits the same
zeros as5LF

νL
[L] , namelyν = 1/L, 2/L, . . . , (L − 1)/L with the multiplicity νL for each

L. These zeros are present owing to certain coincidences between the spectra of distinct
representations.

At last, let us compute the connected part (4) of the class functions in the thermodynamic
limit ω→ 0 with the appropriate prescription for a 1D space. Doing this up toN = 6 for
instance, one verifies the polynomials

Zc
[N ] =

V

λT

1√
N

N−1∏
k=1

(
1− N

k
ν

)
Zc
P 6=[N ] = 0. (20)

This reproduces the cluster coefficientsbN = (±)N−1N−1Zc
[N ] for Bose (Fermi) statistics,

because the spectrum of the Calogero model in a harmonic well is linear withν and thus
coincides with its first-order approximation. On the other hand, one has merelybN>2 = 0
for Boltzmann statistics. These results are supported by a perturbative analysis. Indeed,
Zc
P can be expanded as a series of connected cluster diagrams withνL loops of lengthL

according to [3]. Consider a connected diagram withn vertices and̀ loops. To compute it,
one has to effect the interchange of the two incoming propagators in each vertex in order to
reduce the interactionνωpij to a constantνω. These interchanges produce a new topology
with `′ loops. Integrating the harmonic propagators, each loop gives one one-body partition
function for a certain temperature, and thus the diagram behaves asωn−`

′
in the limitω→ 0.

Since the maximal number of loops is`′ = n+ 1 in a connected diagram withn vertices,
the leading diagrams havè′ = n+1 loops after the interchanges and one verifies that such
diagrams havè = 1 loop in their initial form [3]. These diagrams behave asω−1 which
has to be identified with a volume, and the other diagrams do not contribute. This proves
that onlyZc

[N ] contributes, the other class functions vanish in the thermodynamic limit.
We have obtained the following thermodynamics. In Bose and Fermi statistics, the

linear model reproduces the thermodynamics of the Calogero model where it is well known
that particles of the same momentum obey the Haldane exclusion of parameterg = ν for
bosons andg = −ν for fermions [4]. In contrast, in the academic case of Boltzmann
statistics, the dependence on the coupling parameter disappears and thus the linear model
verifies the state equation of an ideal gas.

We are now in position to construct a 2D extension for our linear model of intermediate
statistics in a harmonic well. This extension is suggested in [3], where one has obtained a
few-body spectrum which interpolates linearly between the Bose spectrum and the Fermi
spectrum of a system of independent and identical 2D harmonic oscillators and which is
consistent with a finite virial expansion. Indeed, the 2D functionsFP (ν) = ZP (ν)/ZP (0)
obtained in [3] are identical with those of the 1D linear model of intermediate statistics,
and this indicates that the 2D linear model is merely the tensorial product of the 1D linear
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model by a system of 1D harmonic oscillators. The Hamiltonian is then of the form

H =
N∑
i=1

(− 1
2∂

2
xi
− 1

2∂
2
yi
+ 1

2ω
2x2
i + 1

2ω
2y2
i )+

∑
i,j<

νωpxixj (21)

whereri = (xi, yi) is a couple of coordinates for theith particle on the plane. The tensorial
product gives an eigenstate basis in terms of the eigenstates of a system of 1D harmonic
oscillators,

ψ = 〈xi |nk, Y, a, b〉〈yi |n′k, Y ′, a′, b′〉 (22)

with the energy spectrum

E =
N∑
k=1

knkω +
N∑
k=1

kn′kω +Nω + (dY,a + dY ′,a′)ω + sY νω. (23)

However, these eigenstates have to be symmetrized according to the irreducible
representations (Bose, Fermi, mixed) of the group of the particle exchanges.

Knowing theFP functions from the 1D linear model, we directly have the class functions
for the 2D linear model as

ZP = FP
∏
L

(
1

2sh(Lβω/2)

)2νL

(24)

and we can deduce the partition functions from the relations (2). The propertyFP (1−ν) =
(−)PFP (ν) still implies ZY (1− ν) = ZȲ (ν) due to the identityχȲ (P ) = (−)P χY (P ), and
thus the spectral properties of the 2D linear model are those of an intermediate statistics
interpolating linearly between conjugate representations ofSN whenν goes from 0 to 1.

Computing the thermodynamic limit of the connected part of the class functions up to
N = 6, one verifies the following polynomials inν [12],

Zc
P =

V

λ2
T

N
∑
νL−2{ν(ν − 1)}

∑
νL−1

∏
L

F
νL
[L] (25)

where

F[L] =
L−1∏
k=1

(
1− L

k
ν

)
. (26)

These formulae can be proved for allN by means of a perturbative analysis provided that
some zeros of theFP ’s are known. The perturbative expansion ofZc

P involves the above
mentioned diagrams for the 1D linear model, but these diagrams are now multiplied by the
contribution (12) of the second dimensiony and, furthermore, the thermodynamic limit is
different for a 2D space. Only the main steps of the reasoning are outlined here.

(i) By definition, the diagrams ofZc
P are connected and havè= ∑L νL loops. The

topological inequalitỳ + `′ 6 n+ 2 ensures that the leading diagrams behave as a volume
factorω−2 in the limit ω→ 0.

(ii) As a result, the leading diagrams verifyn = `+ `′ − 2 6 `+ N − 2 so thatZc
P is

a polynomial of degreè +N − 2 at most.
(iii) At least n = ` − 1 vertices are required to connect all the loops and thus the

polynomial begins asν`−1. In other words, the multiplicity of the zeroν = 0 is ` − 1.
Due to the symmetry of the spectrum under the mirror transformationν → 1− ν, the value
ν = 1 is also a zero ofZc

P with the same multiplicity.
(iv) Assuming thatZP admits the same zeros that5LF

νL
[L] for all ω, the relations (4)

imply obviously thatZc
P also have these zeros with the same multiplicities.
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(v) At this step, one has obtained`+N −2 zeros for a polynomialZc
P whose maximal

degree is preciselỳ+N−2. Thus, the polynomial expression (25) is proved up to a constant
factor. To determine this constant factor, it suffices to compute the lowest coefficient in the
polynomial. One has to sum the diagrams withn = `− 1 vertices. In fact, one shows that
this sum is determined by the total multiplicityn!Nn−15LL

νL of these diagrams, and one
finally reproduces (25).

On the other hand, up toN = 6 for instance, one easily verifies the following formula
for the cluster coefficients in Bose (Fermi) statistics:

bN =
∑
P

dP

N !
(±)PZc

P = (±)N−1 V

λ2
T

1

N2

N−1∏
k=1

(
1∓ N

k
ν(1± 1− ν)

)
. (27)

These coefficients coincide with those of a system of bosons (fermions) obeying Haldane
statistics of the parameterν(1± 1− ν) [3]. The corresponding thermodynamics has been
studied [13]. In particular, one shows that the second virial coefficient is identical with
the anyon one and the others do not depend on the coupling parameterν. Note that
the polynomials (25) and (26) play an important role in the perturbative and numerical
approaches to the anyon thermodynamics [3, 6, 7, 14]. Indeed, the results forZc

[11], Z
c
[21]

andZc
[N ] are exact in the anyon context whereas the other polynomials may be viewed as

a starting approximation whose anyonic corrections remain to be elucidated.
Let me also mention the academic case of Boltzmann statistics. The cluster coefficients

are then

bN = 1

N !
Zc

[1N ] = V λ−2
T N

N−2N !−1{ν(ν − 1)}N−1.

In fact these coefficients are reproduced in a gas obeying Haldane statistics of the
parameterg = ν(1 − ν) between particles of the same momentum. One easily derives
the thermodynamics in a closed form for such a gas by maximizing the thermodynamical
potential, so then the cluster expansion is deduced by solving an implicit equation by
iterations. The pressure iskBTρ + 1

2ν(1− ν)kBT λ
2
T ρ

2 in terms of the densityρ.
The existence of well defined thermodynamics connected to anyons is not at all obvious

for a Hamiltonian of the form (21). In the absence of a complete understanding, only a few
aspects of the connection between the anyon model and the 2D linear model are displayed
here.

The first aspect regards the presence of the anyon linear energies in the 2D linear model.
For anyons in the irreducible representationY , the two classes of linear energies are [3]

EI =
1∑
n=0

N−n∑
m=1−n

(n+m)λnmω +Nω + dY,aω + 1
2N(N − 1)νω (28)

EII =
1∑
n=0

N−n∑
m=1−n

(n+m)λnmω +Nω + dȲ ,aω + 1
2N(N − 1)(1− ν)ω

where the quantum numbersλnm are non-negative integers. In the 2D linear model, the
energies with the same dependence inν correspond respectively to the symmetric and
antisymmetric eigenfunctions under the exchanges of thexi ’s. The tensorial product (22)
leads directly to a basis of these eigenstates in the representationY , namely

ψI = 〈xi |nk,Bose〉〈yi |n′k, Y, a, b〉 (29)

ψII = 〈xi |nk,Fermi〉〈yi |n′k, Ȳ , a, b〉.
Albeit these eigenfunctions have no connection with the anyon ones, their energies (23)
exactly coincide with the anyon linear energies (28).
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We would like to connect the interaction of the 2D linear model to the anyon interaction
at first perturbative order. The complex notationszi = xi + iyi and∂i = ∂zi are used here.
Starting from the definition of a system ofN anyons in the anyon gauge with an additional
harmonic attraction, it is advisable to do the transformationψ = 5i,j<z

ν
ij ψ̃ in order to work

with both a monovalued wavefunctioñψ and a Hamiltonian

H̃ =
N∑
i=1

(− 1
21i + 1

2ω
2r2
i )− 2ν

∑
i,j<

1

zi − zj (∂̄i − ∂̄j ) (30)

whose matrix elements are finite. This last formulation is suitable to a perturbative analysis
[15]. At first perturbative order, it suffices to diagonalize the restriction of the perturbation
inside each unperturbed degenerate subspace. The restriction of−2νz−1

ij ∂̄ij naturally appears
in the calculation of the 2-anyon spectrum at first perturbative order. It is given byνωhij
where hij is the helicity operator whose eigenvalue is the sign of the relative angular
momentummij of the two particlesi and j with sign(0) = 1 (sign(0) = −1 would
correspond to a self-adjoint extension of the anyon model). At this level, the difference
between the anyon model and the linear model consists of a simple rotation

hij = U−1
ij pxixj Uij Uij = (U+ij )−1 = 1√

2
(1+ pxixj hij ) (31)

due to the elementary relationsh2
ij = p2

ij = 1, h+ij = hij , p+ij = pij andhijpij + pijhij = 0
which can easily be verified onto the angular basis eimijarg(rij ) with mij an integer, except
for the subspacemij = 0 whereUij must be set to unity. In theN -body case, the relation∑

i,j<

νωhij =
∑
i,j<

U−1
ij νωpxixj Uij (32)

implies the identity of the traces of the energies inside each unperturbed degenerate subspace
between the 2D linear model and the anyon model at first perturbative order inν. The
identity also holds for the partition and class functions at first order inν. Without a
relationship between the linear model and the anyon model at further orders inν, the
finiteness of the virial coefficients of the linear model in the thermodynamic limit and their
relevance in the anyon context remains mysterious. This should be contrasted with the
linearization of theν-dependence in the three-anyon spectrum which leads to a divergent
virial coefficient as it should be [16].

In conclusion, we have solved a strange model of intermediate statistics and we have
obtained some of its physical and mathematical implications. However, the definition of
the linear model as a first-order approximation in a harmonic well is not satisfactory. For
example, the use of a box instead of a harmonic well does not lead to the correct virial
expansion without introducing nonlinear statistics-dependent terms in the Hamiltonian [17].
In fact, a satisfying construction, if it is possible, remains to be stated. One would like
to construct a physical model defined independently of the regulator (box, harmonic well,
etc) and whose eigenstates also interpolate between bosons and fermions. In the absence of
such a construction, the physical interpretation of the results presented in this paper seems
out of reach. However, two points deserve attention. In the 1D linear model, the two-body
interaction seems to mimic the particle interchange observed in the asymptotic scattering of
the Calogero problem [18]. In the 2D linear model, the interaction operatorpxixj is nothing
but the parity in the relative framework, that ispxixj (xij , yij ) = (−xij , yij ). I hope that
a different point of view or an improvement in these models will shed some light on the
connection between anyons and the generalized exclusion principle.



A linear model of intermediate statistics 2733

Appendix

The calculation of the first class and partition functions can easily be performed on a formal
computer by handling rational functions in the variablesu = eβω, v = eβων . It appears that
the cyclic functionsF[N ] are completely factorizable according to (19). As an illustration,
the other functionsFP are presented here in their factorized form up toN = 4,

F[11] = ch(1− 2ν)(βω/2)

ch(βω/2)

F[111] = ch(3− 6ν)(βω/2)+ 2ch(βω/2)

ch(βω/2)(2chβω + 1)
,

F[14] =
ch(3− 6ν)βω + 3(2chβω + 1)ch(1− 2ν)βω + 2chβω

4ch2(βω/2)chβω(2chβω + 1)
(33)

F[211] = ch(1− 2ν)(βω/2)(ch(2− 4ν)βω + 2ch2(βω/2))

ch(βω/2)chβω(2chβω + 1)
F[2]

F[22] = ch(2− 4ν)βω + 2ch(1− 2ν)βω − 2sh2(βω/2)

chβω(2chβω + 1)
F 2

[2] (34)

F[21] = F[2](3β) whereF[2](β) is a factor, andF[31] = F[3](2β) whereF[3](β) is a factor in
the same way. The connected partsF c

P (ν) = Zc
P (ν)/ZP (0) are easily deduced. Indeed, due

to its product form (12), the normalizationZP (0) can be factorized out of the relations (4)
so that these relations also hold between theFP ’s and theF c

P ’s. Using the notation

G(β) = 4shν(βω/2)sh(ν − 1)(βω/2) (35)

the connected parts in a factorized form read

F c
[11] =

G

2ch(βω/2)

F c
[111] =

ch(1− 2ν)(βω/2)+ 2ch(βω/2)

ch(βω/2)(2chβω + 1)
G2

F c
[21] =

G(2β)

2chβω + 1
F[2]

F c
[14] =

(ch(1− 2ν)(βω/2)+ ch(βω/2))3+ 1
2chβω(3ch(1− 2ν)(βω/2)+ 5ch(βω/2))

ch2(βω/2)chβω(2chβω + 1)
G3

(36)

F c
[211] =

ch(1− 2ν)βω + 2ch(1− 2ν)(βω/2)ch(βω/2)+ 2chβω + 1

2ch(βω/2)chβω(2chβω + 1)
G(β)G(2β)F[2]

F c
[22] =

ch(1− 2ν)βω + 2ch2(βω/2)

chβω(2chβω + 1)
G(2β)F 2

[2]

F c
[31] =

G(3β)

4ch(βω/2)chβω
F[3]

andF c
[N ] = F[N ] . Performing the connected part, the factor5LF

νL
[L] is maintained whereas

a new factorG
∑
νL−1 can always be extracted.
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