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A linear model of intermediate statistics
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Abstract. Approximate Hamiltonians for the one-dimensional (1D) Calogero and two-
dimensional (2D) anyon models in a harmonic well are constructed. These Hamiltonians are
exactly diagonalizable, and their spectra interpolate linearly between the Bose statistics and
the Fermi statistics. In particular, in 2D, the thermodynamics is similar to that of a system
obeying a generalized exclusion principle and may be viewed as a starting approximation for
the thermodynamics of anyons.

Many generalizations of the concept of quantum statistics have been considered in recent
decades [1]. The 1D Calogero model and the 2D anyon model are examples. In these two
models, the particles interpolate between bosons and fermions or more generally between
the conjugate representations of the symmetric group when the statistical coupjes

from 0 to 1 [2,3]. Albeit the Haldane generalization of the Pauli principle is satisfied in
some particular cases, as the Calogero model in the Bose and Fermi representations [4],
or anyons in the lowest Landau level [5], the general situation is often more complicated
[6,7].

In this paper, | focus on the remarkable properties of the solution of the Calogero
model to first order in perturbation theory. In this way, | define a ‘linear model' of
intermediate statistics in 1D, the particles of which are in a harmonic well and only
interact by interchanges. This model is exactly solved for all exchange symmetries of
the wavefunction. Its spectrum interpolates linearly between the conjugate representations
of Sy and of course involves all the linear energies of the Calogero model. A consistent
thermodynamics is obtained in the thermodynamic limit. The linear model of intermediate
statistics is immediately generalizable in 2D where it appears intimately connected to the
anyon model. Albeit its eigenfunctions are not altered by the interaction, the linear model
produces a thermodynamics similar to that of a system obeying a generalized exclusion
principle. In particular, it may be viewed as a starting approximation for the thermodynamics
of anyons.

Here, one considers a quantum systemMoparticles with a Hamiltoniand. p is a
permutation of particlesP is its conjugate clasg] is a Young pattern or a Young projector
[8]. The classP is identified with the partition{[L":}] of N wherev, is the number of
cycles of lengthL in p € P. For convenience, a Young pattern will be denoted by a
partition between round brackets, namé{y;}) wherej, is the number of cases in thith
line.
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One defines the partition functioty = tre #7Y and the class functio, = tre ## p,
with 81 = kgT. The latter trace is over the whole Hilbert space, it may be expanded with
respect to irreducible representations as

Zp=7) xr(P)Zy (1)
Y

where the charactery (P) [9] originates from the trace gf in each irreducible state space
generated by the permutations of a stéig = 0. The inverse relation

d
Zy = E 7NP| xy(P)Zp 2
— NI

is obtained by using the orthogonality relations for charactéss= N!/ [, v.!L" is the
number of permutations of clag3.

In the thermodynamic limit, the thermodynamics is determined by the connected parts
Zy and Zj, which are additive quantities. In particulaZ(y,, Z¢,, and (1/NDHZp,,
reproduce the cluster coefficiertig in Bose, Fermi and Boltzmann statistics, respectively
[10]. The connected parts of the class functions can be defined in a standard way by

Ziny = Zfy)

Zieat) = 21y 1) + 2 ZiLs) 3)
Zitstatel = Zitytong) F ZeatanZita + ZeneaZit + ZiraraZie + Zia Zia Zitq

etc. We can solve these equations successively and obtain

Zi = Zv)

Zi1y15) = ZitaLa = Zi 2Ly 4)
Zis 1014 = ZitnLaLa = Zita L Z(Ls) = Zits1d Z(Ls) — ZiLara Zizs + 221130 211 Z(Ls)

etc. In a perturbative expansion [3], the connected part reduces to the series of connected
diagrams. The relations (1) and (2) apply equally well to the connected partad Z¢,
and will be useful to computéy in Bose and Fermi statistics.

Note that the particles will be confined in a harmonic well of frequesaawather than
in a box of volumeV. Thew — 0 limit can be identified with the thermodynamic limit
if the divergent factorN ~¢/2(Bw)~¢ surviving in the connected parts is identified with an
additive factor, namelWA;" whered is the space dimension ang = h./278/m is the
thermal wavelength [11].

Let me first review some aspects of the systerWdtlentical harmonic oscillators. The
Hamiltonian is

N
H =) (=39 + jo'xD) 5)
i=1
in unitsh = 1, m = 1. The creation (annihilation) operators are
+ w 9 + +
af =[x F e H,a]] = twa;. 6
2T o ] (6)

A basis in the ring of the symmetric polynomials in tNecommuting variableaii is given
by
N
Ap =) (@ [H, Af] = +koAE @)
i=1
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with k = 1,2,..., N. These operators constitute a complete set of raising (lowering)
operators preserving the exchange symmetry of the wavefunction. For a definite exchange
symmetry, there is one ground statg annihilated by thed;’s and a set of excited states

N
v =[]@aH"vo ®)
k=1
with the energies
N
k=1

where then;’s are non-negative integers. According to permutation theory, there are
N! independent ground states: one in the Bose representation, another in the Fermi
representation, andy degenerate ground states in each irreducible representation of
dimensiondy of Sy. The ground states may be deduced from the action of some
non-symmetric homogeneous polynomials in th&'s onto the bosonic ground state
exp(—%a)le?). Thus, the energy of a ground statefis = %Na) + dow if d is the degree
of the homogeneous polynomial. In particular, the fermionic ground state follows from the
action of the antisymmetric operat}i[i%(ai* —aj*) and its energy i%Ner %N(N —Jo.
The general case is outlined in [3]. For instance, one finds the baesa;, af —ad} and
{(af —a3)(af +a3 —2a3), (af —aF)(a] +aj —2a3)} for the two equivalent representations
of dimension 2 ofSs.

In this approach, the complete set of quantum numbers.,i¥, a and b where the
n;'s are the preceding raising numbersjs a Young pattern ofy, a =1, 2, ..., dy labels
the equivalent irreducible representations associated wihdb = 1, 2, .. ., dy labels the
elements of a ground-state basis for the representation of indéxexla. Since all the
ground states of an irreducible representation are combinations of the permutations of one
of them, their energies are identical, that is

Eo = %Na)—}—dyqaa) (10)

does not depend aoln One can select one of these degenerate ground states with a Young
projectorY, as in the definition of the partition functiany .

Performing the trace over the,’s, one gets the partition function in terms of the
ground-state energies,

exp[—(dy, — N(N —1)/4
Zy = Z pl=( YI,V ( )/ ).360]_
p r—1 28NkBw/2)
The energy (10) i N for the Bose ground state addVe + N(N — D for the Fermi

one. In another representation, the ground-state energies may be obtained by identifying
(11) with (2) where

1 vL
2 =11 (szsorm) 4

L

(11)

is first rewritten as a sum of certain terms of the expansion (11) by means of algebraic
operations—this is always possible due to (1). In this way, one flads,} = {0},
{dav.et = {1}, {de.d = {0} {deve = (1,2}, {dawat = {3} {dw.t = {0}
{day.a) = {1.2,3}, {1d<zz>,a} = {2, 4}, {d21v.a} = {3,4,5}, {da11p.«} = {6}; etc. Note

the symmetrydy , = sN(N — 1) — dy 1,4, _, between conjugate patteri’sand Y.
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Let me now consider a system of identical harmonic oscillators interacting by an
attractive Calogero potential, that is

192 4 1,22 vv -1
H = Z( i+ (13)
for v € [0, 1]. This model is rather different from the Calogero one for a repulsive potential.
In fact, it is a 1D model of intermediate statistics analogous to the 2D anyon model [2].
Suppose that one wishes to discuss the interaction to first order in perturbation theory. To
do this, it is advisable to do the transformatipn= I, ; | x; —x,-|”1} in order to work with
a Hamiltonian

N
H = Z(—%E)iz + %a)zxiz) - Z
i=1

i< T

(9 —9)) (14)

whose matrix elements are well defined with the principal value regularization. Then, it
suffices to diagonalize the restriction of the perturbation inside each unperturbed degenerate
subspace. The restriction of the two-body interaction;; 18, ; Is necessarilpwp;;, where
pij represents the transposition.gfand.x;, because this restrlctlon must reproduce the linear
slopestvw of the two-body spectrum if the wavefunction is symmetric (antisymmetric) with
respect tay;, x;.

From now on, we focus on the Hamiltonian

H = 2:(—182 Za) xz) + Z vwp;. (15)
l]<
Although this Hamiltonian is defined above as a first-order approximation for the Calogero
model in a harmonic well, we will see that it leads to consistent and interesting results
in the non-perturbative domain €] — oo, oo[. First, note thatZl . pij is known as the
transposition class operator in group theory [8]. Any state of an irreducible representation
Y is an eigenstate of this operator for the eigenvalue

Al ()”l - 1) Xc()_\c - 1)
= Xl: 2 Z 2 (16)
where () is the number of cases in theh line (cth column) of the Young patterir.
As a result, the harmonic basis (8) labelled/qy Y, a andb is also an eigenstate basis of
the preceding Hamiltonian (15) but for the energy spectrum

N

E = Z knyow + %Na) +dy .+ syvow a7
with dy, unaltered. For a givell, this spectrum reproduces the harmonic spectrum of the
representatiory at v = 0 and, surprising enough, it reproduces the harmonic spectrum of
the conjugate representatidghat v = 1. Indeed, the relatiody, + sy = dy , is clearly
verified by the values afy , obtained above foN = 2, 3, 4, ... (the proof for allN remains
to be obtained). In conclusion, the eigenstates are those of a system of identical harmonic
oscillators but the spectral properties are those of a model of intermediate statistics.

The partition functions are simply expressed in terms of the harmonic ones (11) as

Zy(v) = €9P"Z,(0) (18)

and the class functions are then deduced from the relations (1). The linear interpolation
between conjugate representations means Zh#l — v) = Z;(v) which is equivalent to
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Zp(1—v) = (—)PZp(v) due to the identityy; (P) = (—)F xy (P). The class functions have
other remarkable properties that | have verified up/te= 6 (their proofs for allvV remain to

be obtained). After some factorizations, one recovers the funcfigiis) = Z»(v)/Zp(0)
obtained in [3] for a different model (this coincidence will be discussed later). The appendix
displays the first functiong» and their connected parts. The cyclic functions are completely
factorizable as

Nt shik — Nv)(Bw/2)
I1 .

F =
M= 11 shikw/2)

(19)

Albeit the functionF» is not completely factorizable in the general case, it admits the same
zeros asl‘ILF , hamelyv = 1/L,2/L, ..., (L — 1)/L with the multiplicity v, for each
L. These zeros are present owing to certain coincidences between the spectra of distinct
representations.

At last, let us compute the connected part (4) of the class functions in the thermodynamic
limit @ — 0 with the appropriate prescription for a 1D space. Doing this uy te 6 for
instance, one verifies the polynomials

Zfy = XT f ]‘[ <1— v) Z5 . = 0. (20)

This reproduces the cluster coefficiemts = (i)N‘lN‘lz[CN] for Bose (Fermi) statistics,
because the spectrum of the Calogero model in a harmonic well is lineawwveatid thus
coincides with its first-order approximation. On the other hand, one has nigyely= 0

for Boltzmann statistics. These results are supported by a perturbative analysis. Indeed,
Z% can be expanded as a series of connected cluster diagramswitilops of lengthL
according to [3]. Consider a connected diagram witrertices and’ loops. To compute it,

one has to effect the interchange of the two incoming propagators in each vertex in order to
reduce the interactionwp;; to a constanbw. These interchanges produce a new topology
with ¢’ loops. Integrating the harmonic propagators, each loop gives one one-body partition
function for a certain temperature, and thus the diagram behav&s asn the limitw — 0.

Since the maximal number of loops 5= n + 1 in a connected diagram with vertices,

the leading diagrams havé = n + 1 loops after the interchanges and one verifies that such
diagrams havée = 1 loop in their initial form [3]. These diagrams behavedas' which

has to be identified with a volume, and the other diagrams do not contribute. This proves
that onIyZ[N] contributes, the other class functions vanish in the thermodynamic limit.

We have obtained the following thermodynamics. In Bose and Fermi statistics, the
linear model reproduces the thermodynamics of the Calogero model where it is well known
that particles of the same momentum obey the Haldane exclusion of parameterfor
bosons ande = —v for fermions [4]. In contrast, in the academic case of Boltzmann
statistics, the dependence on the coupling parameter disappears and thus the linear model
verifies the state equation of an ideal gas.

We are now in position to construct a 2D extension for our linear model of intermediate
statistics in a harmonic well. This extension is suggested in [3], where one has obtained a
few-body spectrum which interpolates linearly between the Bose spectrum and the Fermi
spectrum of a system of independent and identical 2D harmonic oscillators and which is
consistent with a finite virial expansion. Indeed, the 2D functiéhgv) = Zp(v)/Zp(0)
obtained in [3] are identical with those of the 1D linear model of intermediate statistics,
and this indicates that the 2D linear model is merely the tensorial product of the 1D linear
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model by a system of 1D harmonic oscillators. The Hamiltonian is then of the form

N
H = Z(—%Bﬁ — %35 + %a)zxiz + %a)zyiz) + Z VP, x; (21)
i=1 ij<
wherer; = (x;, y;) is a couple of coordinates for tlith particle on the plane. The tensorial
product gives an eigenstate basis in terms of the eigenstates of a system of 1D harmonic
oscillators,

¥ = (xilng, Y, a, b)(yilny, Y', d', ) (22)
with the energy spectrum
N N
E = Z knyo + Z kniw+ No + (dy,, + dy o)o + syvo. (23)
k=1 k=1

However, these eigenstates have to be symmetrized according to the irreducible
representations (Bose, Fermi, mixed) of the group of the particle exchanges.

Knowing theFp functions from the 1D linear model, we directly have the class functions
for the 2D linear model as

1 2vp,
Zp=F - 24
P 1:[ <28h(Lﬁw/2)) @9

and we can deduce the partition functions from the relations (2). The prope(ty—v) =

(—)P Fp(v) still implies Zy(1—v) = Zy(v) due to the identityx; (P) = (=) xy(P), and

thus the spectral properties of the 2D linear model are those of an intermediate statistics

interpolating linearly between conjugate representationsyofvhenv goes from 0 to 1.
Computing the thermodynamic limit of the connected part of the class functions up to

N = 6, one verifies the following polynomials in [12],

4

z
2
)\T

NE2 o — D= R (25)
L

where

L-1 L
Fu=]] (1 - ku> : (26)
k=1
These formulae can be proved for all by means of a perturbative analysis provided that
some zeros of thé'p’s are known. The perturbative expansion4f involves the above
mentioned diagrams for the 1D linear model, but these diagrams are now multiplied by the
contribution (12) of the second dimensignand, furthermore, the thermodynamic limit is
different for a 2D space. Only the main steps of the reasoning are outlined here.

(i) By definition, the diagrams of¢, are connected and have= ), v, loops. The
topological inequalityl + ¢ < n + 2 ensures that the leading diagrams behave as a volume
factor =2 in the limit w — O.

(i) As a result, the leading diagrams verify= ¢ + ¢ —2 < £+ N — 2 so thatZ$ is
a polynomial of degreé + N — 2 at most.

(iii) At least n = ¢ — 1 vertices are required to connect all the loops and thus the
polynomial begins as‘~. In other words, the multiplicity of the zero = 0 is ¢ — 1.

Due to the symmetry of the spectrum under the mirror transformatien 1 — v, the value
v =1is also a zero oZ$ with the same multiplicity.

(iv) Assuming thatZ, admits the same zeros that, £}/ for all o, the relations (4)

imply obviously thatZ¢, also have these zeros with the same multiplicities.
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(v) At this step, one has obtainéd- N — 2 zeros for a polynomiak§ whose maximal
degree is preciselg+N —2. Thus, the polynomial expression (25) is proved up to a constant
factor. To determine this constant factor, it suffices to compute the lowest coefficient in the
polynomial. One has to sum the diagrams with- ¢ — 1 vertices. In fact, one shows that
this sum is determined by the total multiplici N"~1TT, L"* of these diagrams, and one
finally reproduces (25).

On the other hand, up t& = 6 for instance, one easily verifies the following formula
for the cluster coefficients in Bose (Fermi) statistics:

N-1

by = XP: %(i)PZ% = (i)’”;;;z Il (1; %v(lj: 1-— v)) . (27
These coefficients coincide with those of a system of bosons (fermions) obeying Haldane
statistics of the parameterl + 1 — v) [3]. The corresponding thermodynamics has been
studied [13]. In particular, one shows that the second virial coefficient is identical with
the anyon one and the others do not depend on the coupling parametbiote that
the polynomials (25) and (26) play an important role in the perturbative and numerical
approaches to the anyon thermodynamics [3,6, 7, 14]. Indeed, the resuzﬁfprzle]
and Z[CN] are exact in the anyon context whereas the other polynomials may be viewed as
a starting approximation whose anyonic corrections remain to be elucidated.

Let me also mention the academic case of Boltzmann statistics. The cluster coefficients

are then

by = %Z[Cl,v] = VAANN 2Ny — D)V L
In fact these coefficients are reproduced in a gas obeying Haldane statistics of the
parameterg = v(1 — v) between particles of the same momentum. One easily derives
the thermodynamics in a closed form for such a gas by maximizing the thermodynamical
potential, so then the cluster expansion is deduced by solving an implicit equation by
iterations. The pressure ks Tp + 3v(1 — v)kgTAZ p? in terms of the density.

The existence of well defined thermodynamics connected to anyons is not at all obvious
for a Hamiltonian of the form (21). In the absence of a complete understanding, only a few
aspects of the connection between the anyon model and the 2D linear model are displayed
here.

The first aspect regards the presence of the anyon linear energies in the 2D linear model.
For anyons in the irreducible representationthe two classes of linear energies are [3]

1 N—n
E = Z Z (n—i—m))u,,ma)—l—Na)—l-dy,aw—i-%N(N—l)va) (28)
n=0m=1-n
1 N-n
Ey=)" Y (n+mimo+No+dj,o+3NN-1D(1-vo
n=0 m=1-n

where the quantum numbers,, are non-negative integers. In the 2D linear model, the
energies with the same dependencevirtorrespond respectively to the symmetric and
antisymmetric eigenfunctions under the exchanges ofiflse The tensorial product (22)
leads directly to a basis of these eigenstates in the representgtitamely

Y1 = (xilny, Bose (yilny, Y, a, b) (29)

Vi = (x;|ng, Fermi(y;|n,. Y, a, b).
Albeit these eigenfunctions have no connection with the anyon ones, their energies (23)
exactly coincide with the anyon linear energies (28).
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We would like to connect the interaction of the 2D linear model to the anyon interaction
at first perturbative order. The complex notatians= x; +iy; andd; = 9, are used here.
Starting from the definition of a system af anyons in the anyon gauge with an additional
harmonic attraction, it is advisable to do the transformatioa: 1'[1-,_,-<zi”jl} in order to work

with both a monovalued wavefunctiah and a Hamiltonian

N
H=Y (—3Ai+ 30 —20) —=
i=1

ij< <t J

(@ — 9;) (30)

whose matrix elements are finite. This last formulation is suitable to a perturbative analysis
[15]. At first perturbative order, it suffices to diagonalize the restriction of the perturbation
inside each unperturbed degenerate subspace. The restrictkﬁngléi ; naturally appears

in the calculation of the 2-anyon spectrum at first perturbative order. It is givanwhy;

where h;; is the helicity operator whose eigenvalue is the sign of the relative angular
momentumm;; of the two particlesi and j with sign(0) = 1 (sign0) = —1 would
correspond to a self-adjoint extension of the anyon model). At this level, the difference
between the anyon model and the linear model consists of a simple rotation

1
V2
due to the elementary relatioh,%j = pl?j =1, hf; = hyj, pi; = pij andhi;pij + pijhi; =0

which can easily be verified onto the angular badis®¥") with m;; an integer, except
for the subspace:;; = 0 whereU;; must be set to unity. In th&/-body case, the relation

Z vwh,-j = Z Uijlvaxixj U,'j (32)

hj< ij<

hij = U,';lpx,-x,v Uij Uij = (U,’j'—)_l = (1+ px,-x,vhij) (31)

implies the identity of the traces of the energies inside each unperturbed degenerate subspace
between the 2D linear model and the anyon model at first perturbative order he

identity also holds for the partition and class functions at first ordep.in Without a
relationship between the linear model and the anyon model at further ordersthe
finiteness of the virial coefficients of the linear model in the thermodynamic limit and their
relevance in the anyon context remains mysterious. This should be contrasted with the
linearization of thev-dependence in the three-anyon spectrum which leads to a divergent
virial coefficient as it should be [16].

In conclusion, we have solved a strange model of intermediate statistics and we have
obtained some of its physical and mathematical implications. However, the definition of
the linear model as a first-order approximation in a harmonic well is not satisfactory. For
example, the use of a box instead of a harmonic well does not lead to the correct virial
expansion without introducing nonlinear statistics-dependent terms in the Hamiltonian [17].
In fact, a satisfying construction, if it is possible, remains to be stated. One would like
to construct a physical model defined independently of the regulator (box, harmonic well,
etc) and whose eigenstates also interpolate between bosons and fermions. In the absence of
such a construction, the physical interpretation of the results presented in this paper seems
out of reach. However, two points deserve attention. In the 1D linear model, the two-body
interaction seems to mimic the particle interchange observed in the asymptotic scattering of
the Calogero problem [18]. In the 2D linear model, the interaction operatoris nothing
but the parity in the relative framework, that jg ., (xi;, yi;) = (—x;j, yi;;). | hope that
a different point of view or an improvement in these models will shed some light on the
connection between anyons and the generalized exclusion principle.
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Appendix

The calculation of the first class and partition functions can easily be performed on a formal
computer by handling rational functions in the variables ¢, v = ef®V. It appears that

the cyclic functionsFyy; are completely factorizable according to (19). As an illustration,
the other functiong’p are presented here in their factorized form up\te= 4,

ch(1—2v)(Bw/2)
=

ch(Bw/2)
o Ch3—6v)(Bw/2) + 2chBw/2)
M= T ch(Bw/2) 2chBow + 1)
Fo = ch(3 — 6v)Bw + 3(2chBw + 1)ch(1 — 2v)Bw + 2chBw (33)
49 = 4t (Bw/2)chBw (2chBo + 1)
o L= 20)(Bw/2)(ch(2 - 4v)pw + 2ciF(Bw/2)
fora] = ch(Bw/2)chBw (2chBw + 1) 2
Fioy = ch(2 — 4v)Bw + 2c(1 — 2v) Bw — 25 (Bw/2) F2, (34)

chBw(2chBw + 1)
Fio1) = Fi21(38) where Fip)(B) is a factor, andFjzy = Fi31(28) where Fi3(B) is a factor in
the same way. The connected parSv) = Z%(v)/Zp(0) are easily deduced. Indeed, due
to its product form (12), the normalizatidfip (0) can be factorized out of the relations (4)
so that these relations also hold between Maés and theF§’s. Using the notation
G(B) = 4sh(Bw/2)sh(v — 1)(Bw/2) (35)

the connected parts in a factorized form read
Foy=-— o

™ 2¢hBw/2)

¢ _ oL —2v)(Pw/2) +2chpw/2)

(11— ch(Bw/2)(2chBw + 1)

c _ G@p

(1] 2ch8w + 1 2

_ (ch(1 — 2v)(Bw/2) + ch(Bw/2))® + %Ch,Ba)(SCh(l —2v)(Bw/2) + 5¢chBw/2)) G

S ch?(Bw/2)chBw(2chBw + 1)

(36)
po Gl —2v)Bo + 20h(1 — 2v) (Bw/2)ch(Pw/2) + 2chpow + 1
(211 = 2ch(Bw/2)chBw(2chBw + 1)
ch(1 — 2v)Bw + 2cH(Bw/2)
chBw(2chBw + 1)

pe _ G@
B ™ 4ch(Bw/2)chBo

and F; = Fiw). Performing the connected part, the factdy /{j is maintained whereas
a new factorGX':~1 can always be extracted.

G(B)G(2B) Fz

G(2B)F,

Figg =
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